Synthesis of Silylated Derivatives of a Layered Polysilicate Kanemite with Mono-, Di-, and **Trichloro(alkyl)silanes**

Atsushi Shimojima,[†] Dai Mochizuki,[†] and Kazuyuki Kuroda^{*,†,‡}

Department of Applied Chemistry, Waseda University, Ohkubo-3, Shinjuku-ku, Tokyo 169-8555, Japan, and Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, Nishiwaseda-2, Shinjuku-ku, Tokyo 169-0051, Japan

Received January 31, 2001. Revised Manuscript Received May 1, 2001

Interlayer modification of a layered polysilicate kanemite was performed by silylation with mono-, di-, and trichloro(alkyl)silanes. The introduction of silyl groups into the interlayer region was confirmed by XRD, IR, ¹³C NMR, and ²⁹Si NMR. The layered structures of the silylated products were confirmed by swelling behavior upon adsorption of *n*-alkyl alcohols. The amounts of attached alkylsilyl groups varied with the number of functional groups as well as the alkyl chain length in the silylating agents. The products modified with alkyltrichlorosilanes exhibited various interlayer structures due to the different arrangements and/or conformations of the alkyl chains, depending on the chain lengths. The BET surface areas were relatively large (up to \sim 480 m² g⁻¹) when short-chain alkyltrichlorosilanes were used, and decreased substantially to nonporous structures with increasing chain length. In addition to the inherent six-membered rings in the single layered silicate sheets of kanemite, new five- and six-membered rings were formed onto the silicate frameworks when dichloroand trichlorosilanes were used for silvlation. This leads to a new method for constructing novel organosilicate nanomaterials utilizing layered silicates.

Introduction

Many efforts have recently been devoted to the design and construction of inorganic-organic nanomaterials because of their potential application in novel functional materials. Wide varieties of material combinations and synthetic strategies have been employed. Intercalation of organic species into the interlayer spaces of inorganic layered crystals provides unique nanostructures consisting of alternating layers of inorganic and organic moieties.^{1,2} In general, the properties of nanocomposite materials depend on their nanostructures, in particular on the structures of the interfaces. Therefore, precise control of the interactions between inorganic and organic moieties is crucial for the construction of nanomaterials with desired functions.

The host structures of layered polysilicates are composed of silicate sheets containing reactive silanol groups arranged regularly at the interlayer surfaces. The groups are derivatized organically. Silane coupling agents, used widely for the modification of silica surfaces,^{3,4} have also been employed for interlayer modification of layered polysilicates,^{5,6} leading to interstrat-

343.

(5) Ruiz-Hitzky, E.; Rojo, J. M. Nature 1980, 287, 28.

ified inorganic-organic nanocomposites with directly attached interfaces. We have already reported the interlayer modification of layered polysilicates with thicker silicate sheets such as magadiite and kenvaite with various organochlorosilanes.⁷⁻¹¹ Some of these materials possess attractive features applicable for selective adsorbents or nanocomposites with organic polymers. However, the design of the interface at a molecular level is difficult because the exact structures of the host silicates still remain obscure. Therefore, it is very important to investigate the configurations of attached organosilyl groups on silicate frameworks by utilizing host materials with well-defined structures.

Kanemite (NaHSi₂O₅·3H₂O)^{12,13} is promising as a model material for the interlayer modification, because the crystal structure has recently been determined by Gies et al.^{14,15} The mineral is one of the simplest types of layered polysilicates. It has been demonstrated that

(7) Yanagisawa, T.; Kuroda, K.; Kato, C. React. Solids 1988, 5, 167. (8) Yanagisawa, T.; Kuroda, K.; Kato, C. Bull. Chem. Soc. Jpn. 1988, 61, 3743.

- (10) Ogawa, M.; Okutomo, S.; Kuroda, K. J. Am. Chem. Soc. 1998, 120, 7361.
- (11) Isoda, K.; Kuroda, K.; Ogawa, M. Chem. Mater. 2000, 12, 1702. (12) Johan, Z.; Maglione, G. F. Bull. Soc. Fr. Mineral. Cristallogr. 1972. 95. 371.
- (13) Beneke, K.; Lagaly, G. Am. Mineral. 1977, 62, 763.
 (14) Gies, H.; Marler, B.; Vortmann, S.; Oberhagemann, U.; Bayat, P.; Krink, K.; Rius, J.; Wolf, I.; Fyfe, C. Microporous Mesoporous Mater.
- 1998. 21. 183. (15) Vortmann, S.; Rius, J.; Marler, B.; Gies, H. Eur. J. Mineral. 1999, 11, 125.

10.1021/cm010103w CCC: \$20.00 © 2001 American Chemical Society Published on Web 07/03/2001

^{*} To whom correspondence should be addressed. Phone & Fax: +81-3-5286-3199; E-mail: kuroda@mn.waseda.ac.jp.

Department of Applied Chemistry.

[‡] Kagami Memorial Laboratory for Materials Science and Technol-

Ogawa, M.; Kuroda, K. Bull. Chem. Soc. Jpn. 1997, 70, 2593.
 Ogawa, M.; Kuroda, K. Chem. Rev. 1995, 95, 399.
 Pfleiderer, B.; Albert, K.; Bayer, E. J. Chromatogr. 1990, 506,

⁽⁴⁾ Clark, J. H.; Macquarrie, D. J. Chem. Commun. 1998, 853.

⁽⁶⁾ Ruiz-Hitzky, E.; Rojo, J. M.; Lagaly, G. Colloid Polym. Sci. 1985, *263*, 1025.

⁽⁹⁾ Yanagisawa, T.; Harayama, M.; Kuroda, K.; Kato, C. Solid State Ionics 1990, 42, 15.

Scheme 1. Possible Silicate Structures Formed by Silylation of Kanemite with Di- and Trichloro(alkyl)silanes

various types of mesostructured materials can be obtained by inter- and intralayer condensations of silicate frameworks.^{16–19} Silylation with di- and trifunctional silanes can also provide an opportunity to produce new silicate frameworks. Although the original silicate framework consists of only six-membered rings of SiO₄ tetrahedra, silylation with di- and trifunctional silanes should lead to the formation of new silicate structures, including seven-, six-, and five-membered rings (Scheme 1). It is of great interest that the silicate cage structures consisting of four five-membered rings,²⁰ which is a basic structural unit in some zeolites, can be formed by silylation with trifunctional silanes. This implies that the kanemite structure is available for building up novel crystalline organosilicate structures.

Although a preliminarily report described the trimethyl- and triphenylsilylation of interlayer silanol groups of kanemite using dialkyldimethylammonium kanemite as an intermediate,²¹ the structural details were not elucidated. In this study, the interlayer modification of kanemite was performed with various alkylchlorosilanes for the first time. The reactivities of chlorosilanes with kanemite, the structures of the interfaces, and the arrangement of interlayer organic groups were examined in detail.

Experimental Section

Materials. Kanemite (NaHSi₂O₅·3H₂O) was synthesized from 1.0 g of δ -Na₂Si₂O₅ dispersed in 50 mL of H₂O with stirring for 0.5 h.¹³ Hexadecyltrimethylammonium chloride [C₁₆H₃₃N(CH₃)₃Cl, C16TMACl] (Tokyo Kasei Co.) was used as received. Alkyltrichlorosilanes (C_nH_{2n+1}SiCl₃, CnS, n = 1, 2,

(21) Kobayashi, S.; Takei, T.; Fujii, M.; Watanabe, T.; Chikazawa, M. 76th Annual Spring Meeting of the Chemical Society of Japan, Tokyo, April 1999; Abstract No. 4F201.

4, 8, 12, 16, and 18), alkylmethyldichlorosilanes $[C_nH_{2n+1}Si-(CH_3)Cl_2, CnM_1S, n = 1, 8, and 18]$, and alkyldimethylchlorosilanes $[C_nH_{2n+1}Si(CH_3)_2Cl, CnM_2S, n = 1, 8, and 18]$ were used as silylating agents. These chemicals were obtained from Tokyo Kasei Co., except for C16S obtained from Chisso Co., and were used without further purifications. As a solvent for silylation, toluene was distilled prior to use. Toluene and ethanol for other procedures were used as received.

Synthesis. Alkylsilylation follows the previous procedure for magadiite, utilizing an intercalation compound with alkyltrimethylammonium ions as an intermediate,8-11 which enables the modification of interlayer silanol groups even with bulky organosilyl groups. In this study, a layered hexadecyltrimethylammonium kanemite (C16TMA-kanemite), prepared by the ion exchange reaction of Na⁺ with C16TMA cations,¹⁸ was used as an intermediate. The silylation reactions were carried out at room temperature, because Q^2 and Q^4 units of SiO₄ tetrahedra form when C16TMA-kanemite is heated at ${\sim}110$ °C in toluene, indicative of the disruption of the original silicate frameworks (Q³ environment). Typically, C16TMA-kanemite (1.5 g) was dispersed in 30 mL of toluene, followed by the addition of excess amounts (50 mmol) of alkylchlorosilanes under a nitrogen atmosphere. The products reacted for 1 d were centrifuged and subsequently washed with toluene and ethanol to remove residual alkylchlorosilanes and deintercalated C16TMACl. The powdered products after drying at room temperature are designated as CnM_2S- , CnM_1S- , and CnS-kanemites for the products modified with alkyldimethylchlorosilane, alkylmethyldichlorosilane, and alkyltrichlorosilane, respectively. The adsorption of *n*-decyl alcohol was performed for all the products by dispersing and stirring in the alcohol for 1 d. In the case of CnS-kanemites, the adsorption of *n*-alkyl alcohols with the corresponding chain length ($C_nH_{2n+1}OH$, CnOH, n = 1-18) was also performed by stirring simply in liquid alcohols (n = 1 - 8) or in a diethyl ether solution of the alcohols (n = 12-18).

Characterization. Powder X-ray diffraction (XRD) measurements were conducted on a MAC Science M03XHF²² diffractometer with Mn-filtered Fe K α radiation. FT-IR spectra of samples in KBr pellets were obtained with a Perkin-Elmer Spectrum One spectrometer at a nominal resolution of 0.5 cm⁻¹. Thermogravimetry (TG) was carried out with a Mac Science 2000S instrument under a dry air flow at a heating rate of 10 °C/min, and the amounts of SiO_2 fractions in the products were determined by the residual weight after heating to 900 °C. The amounts of organic constituents were determined by CHN analysis (Perkin-Elmer PE-2400). Nitrogen adsorption isotherms were measured by a BELSORP 28-SA instrument (Bel Japan, Inc.) at 77 K. Samples were preheated at 120 °C for 3 h under 1 \times 10⁻² Torr. Solid-state ²⁹Si MAS NMR spectra were recorded on a JEOL JNM-CMX-400 spectrometer at a resonance frequency of 79.42 MHz with a 45° pulse and a recycle delay of 200 s. The samples were put into 7.5 mm (or 5 mm) zirconia rotors and spun at 4-5 kHz. We confirmed that the signals were fully relaxed under these conditions so that quantitative analysis was possible. Solidstate ¹³C CP/MAS NMR spectra were recorded on a JEOL GSX-400 spectrometer at a resonance frequency of 100.40 MHz and a recycle delay of 5 s. The ²⁹Si and ¹³C chemical shifts were referenced to tetramethylsilane at 0 ppm.

Results and Discussion

Modification of the Interlayer Silanol Groups with Alkylchlorosilanes. The XRD patterns of the layered C16TMA–kanemite as well as the reaction products with mono-, di-, and trichloro(methyl)silanes are shown in Figure 1. The peak at $2\theta = 3.5^{\circ}$ (d = 2.84nm) with higher order diffractions in C16TMA–kanemite disappeared, and new peaks at d spacings of 1.74, 1.44, and 1.56 nm appeared in the C1M₂S–, C1M₁S–,

⁽¹⁶⁾ Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C. Bull. Chem. Soc. Jpn. **1990**, 63, 988.

⁽¹⁷⁾ Inagaki, S.; Fukushima, Y.; Kuroda, K. J. Chem. Soc., Chem. Commun. **1993**, 680.

⁽¹⁸⁾ Kimura, T.; Itoh, D.; Okazaki, N.; Kaneda, M.; Sakamoto, Y.; Terasaki, O.; Sugahara, Y.; Kuroda, K. *Langmuir* **2000**, *16*, 7624.

⁽¹⁹⁾ Kimura, T.; Kamata, K.; Fuziwara, M.; Takano, Y.; Kaneda, M.; Sakamoto, Y.; Terasaki, O.; Sugahara, Y.; Kuroda, K. Angew. Chem., Int. Ed. **2000**, 39, 3855.

⁽²⁰⁾ Vortmann, S.; Rius, J.; Siegmann, S.; Gies, H. J. Phys. Chem. B 1997, 101, 1292.

⁽²²⁾ Gao, W.; Reven, L. Langmuir 1995, 11, 1860.

Figure 1. XRD patterns of (a) kanemite, (b) C16TMA-kanemite, (c) $C1M_2S$ -kanemite, (d) $C1M_1S$ -kanemite, and (e) C1S-kanemite.

 Table 1. Amounts of Alkylsilyl Groups in Silylated

 Derivatives of Kanemite

		mass % C	mass % H	mass % N	% SiO ₂	amt of alkylsilyl groups ^a /SiO ₂
C1	M_2S	16.94	4.66	0.05	78.8	0.42
	M_1S	13.56	3.56	0.00	82.6	0.51
	S	10.52	2.75	0.05	85.8	0.75
C8	M_2S	18.21	4.56	0.36	75.7	0.09
	M_1S	32.44	6.56	0.06	63.0	0.34
	S	32.73	6.14	0.09	58.5	0.40
C18	M_2S	28.92	5.99	0.39	64.7	0.09
	$\tilde{M_1S}$	49.22	8.86	0.00	43.8	0.33
	S	47.20	8.70	0.05	42.1	0.38

^aEvaluated by CHN analysis and thermogravimetry.

and C1S-kanemites, respectively. Desorption of C16TMA cations during the reaction was confirmed by the quantitative analysis of nitrogen (Table 1). The amounts of residual C16TMA cations were much smaller (< 0.001 per SiO₂ unit of kanemite) than that in C16TMAkanemite (ca. 0.29). The bonding of the alkylsilyl groups with the silicate layers was revealed by ²⁹Si MAS NMR, as shown in Figure 2. C16TMA-kanemite is composed of SiO₄ units with their Q³ environments observed at around -100 ppm and a small proportion of Q^4 signals observed at around -110 ppm. The reaction products exhibit signals assigned to M^1 (13 ppm), D^2 (-16 ppm), and $T^{2,3}$ (-56, -65 ppm) silicate units derived from mono-, di-, and trichloro(alkyl)silanes, respectively. The spectra also showed a substantial increase in the relative intensity of Q⁴ signals due to newly formed Q⁴ units by the silvlation of interlayer Si-OH groups.

The layered structure of the products was confirmed by the swelling behavior upon adsorption of *n*-decyl alcohol. The *d* values of all the products increased after the adsorption, which provides strong evidence that the condensation of Si–OH groups between adjacent layers (*inter*layer condensation) did not proceed during the silylation. Furthermore, the possibility of the condensa-

Figure 2. ^{29}Si MAS NMR spectra of (a) C16TMA–kanemite, (b) C1M₂S–kanemite, (c) C1M₁S–kanemite, and (d) C1S–kanemite.

tion within the individual silicate layer (*intra*layer condensation) was examined. In the ²⁹Si MAS NMR spectrum of C1M₂S–kanemite (Figure 2b), the increase in the intensity of the Q⁴ signals was almost equal to the intensity of the M¹ signal. In addition, the relative intensity of the Q⁴ signal in the Q region (Q⁴/(Q³ + Q⁴) ratio) was in agreement with the degree of silylation evaluated by thermogravimetry and elemental analysis. These results suggest that the intralayer condensation between neighboring Si–OH groups is negligible in this system.

The number of attached alkylsilyl groups per SiO₂ unit of kanemite was dependent on the number of functional groups, and increased in the following order: 0.42 ($C1M_2S$ -kanemite) < 0.51 ($C1M_1S$ -kanemite) < 0.75 (C1S-kanemite). The steric hindrance of the longer alkyl chains also affects the degree of silvlation. As shown in Table 1, the amounts of attached silyl groups apparently decrease with increasing chain length, and exhibit similar values for the samples of *n* = 8 and 18. Consequently, $C8M_2S-$ and $C18M_2S$ kanemites exhibited the lowest degree of silvlation of all the systems. These products showed very broad XRD peaks, while sharp peaks accompanying higher order diffractions were clearly observed for CnS- and CnM1Skanemites where n = 8 and 18. The amount of attached alkylsilyl groups in C8M2S-kanemite increased from 0.09 to 0.15 by adding twice the amount of C8M₂S and stirring for a week during the reactions. The product showed relatively sharp diffraction peaks, indicating that the structural ordering increased with an increases in the degree of silvlation.

Interlayer Structures of CnS**–Kanemites.** The XRD patterns of CnS–kanemite with n = 1, 2, 4, 8, 12, 16, and 18 are shown in Figure 3. Well-defined patterns due to the layered structures appear with increasing chain lengths. The variation in d_{001} values as a function

Figure 3. XRD patterns of CnS-kanemites for (a) n = 1, (b) n = 2, (c) n = 4, (d) n = 8, (e) n = 12, (f) n = 16, and (g) n = 18.

Figure 4. Variation in the basal spacings of C*n*S–kanemites before and after C*n*OH adsorption as a function of the number of carbon atoms in the alkyl chains.

of the number of carbon atoms in the alkyl chains is displayed in Figure 4. There is no linear relationship between the d values and alkyl chain length. The difference in the degree of silvlation is one of the factors that affect interlayer distances. As described below, the quantity of attached alkylsilyl groups decreased from 0.75 to 0.46 per SiO₂ with increasing chain length from n = 1 to n = 4, and became constant (ca. 0.40) for n =8-18. The *d* values of all the products were variable depending on the degree of silvlation. However, it is difficult to interpret the decrease in the *d* spacing from 3.75 to 3.45 nm as the chain length increases from n =16 to n = 18, because the amounts of attached alkylsilyl groups in both of the products are almost equal. This behavior should be attributed to the difference in the conformation and/or in the arrangement of the interlayer alkyl chains.

The conformations of the long-chain alkylsilyl groups bonded to the silica surface can be investigated by ^{13}C

Figure 5. ¹³C CP/MAS NMR spectra of (a) C8S–kanemite, (b) C12S–kanemite, (c) C16S–kanemite, and (d) C18S– kanemite before (solid line) and after C*n*OH (n = 12, 16, and 18) adsorption (dotted line).

CP/MAS NMR. It is known that the signals assigned to the interior methylene carbons appear at 33 ppm for all-trans conformations and shift upfield to 30 ppm for trans/gauche conformations.^{22,23} In the ¹³C CP/MAS NMR spectra of the products (Figure 5), the signal due to the interior methylene carbons appears at 30 ppm (*trans/gauche* conformations) in CnS-kanemites (n =8-16), whereas the signal is mostly detected at 33 ppm (all-trans conformations) in C18S-kanemite. The arrangement of the alkyl chains in the interlayer spaces was further considered. In Figure 4, the basal spacing increases linearly as the chain length increases in the range from n = 8 to n = 16. The slope of the dashed line gives an average increment of ca. 0.20 nm/CH₂ group, which is larger than the maximum value for the interdigitated monolayer (ca. 0.13 nm/CH₂). This fact, together with the ¹³C CP/MAS NMR data, suggests that the alkyl chains are arranged in a bilayer structure with a disordered state. In contrast, the alkyl chains in C18S-kanemite are supposed to adopt an interdigitated monolayer because of the smaller interlayer distances regardless of longer and fully extended chains.

The *d* values of all the products increased upon adsorption of *n*-alkyl alcohols with the same chain lengths as those of the corresponding alkylsilyl groups (Figure 4). Similar behavior was reported for the organic derivatives of the layered polysilicate magadiite with alkyltrichlorosilanes.¹⁰ The driving force for intercalation is ascribed to the hydrophobic interactions and hydrogen bonding with Si–OH groups, suggesting that alcohol molecules are located between alkylsilyl groups. The increase in the *d* values can be explained in terms of the aggregation state of the mixed phases consisting

⁽²³⁾ Pursch, M.; Sander, L. C.; Albert, K. Anal. Chem. 1996, 68, 4107.

Figure 6. Variation in the BET surface areas of CnS-kanemites as a function of the number of carbon atoms in the alkyl chains. Inset: nitrogen adsorption isotherms of CnS-kanemites (n = 1-18).

of both alkylsilyl groups and alcohol molecules. The IR absorption bands due to CH₂ stretching vibrations of the products were slightly shifted to lower frequencies after CnOH adsorption (see the Supporting Information, Table S1), indicating that the interlayer chains became more rigid and extended states.^{22,24} The changes in the conformation of the alkyl chains were also confirmed by ¹³C CP/MAS NMR. In particular, the signal at 30 ppm for disordered chains was distinctly shifted to 33 ppm for *all-trans* chains when C16S-kanemite was treated with C16OH (Figure 5c). It is of interest that C18S-kanemite exhibited very large expansion of the basal spacing upon C18OH adsorption (\sim 1.78 nm), while the interlayer chains did not show such a significant conformational change (Figure 5d). Considering that the basal spacing of the resulting product (5.23 nm) cannot be attained by a monolayer arrangement of C18 chains, even if fully extended chains were oriented normal to the surface, the alkylsilyl groups appear to be rearranged from a monolayer to bilayer structure by the alcohol adsorption.

Nitrogen adsorption measurements give us additional information on the interlayer structure. As shown in Figure 6, the BET surface areas of the products exhibited relatively large values (\sim 480 m² g⁻¹) in the case of C1S-kanemite, and decreased substantially with increases in chain length. This behavior depends essentially on the chain length, but is independent of the degree of silvlation. In fact, C1M₂S-kanemite also exhibited porosity ($\sim 210 \text{ m}^2 \text{ g}^{-1}$), though the amount of attached alkylsilyl groups (0.42) was considerably lower than for C1S-kanemite (0.75), and was comparable to those of the C*n*S–kanemites (n = 8-18), which have nonporous structures. The origin of the porosity can be explained by pillaring of the interlayer spaces by the small alkylsilyl groups. As the chain becomes longer (n = 8-18), the interlayer space is thought to be occupied by densely packed chains, leaving less volume for N₂ adsorption. On the basis of all the results described above, the representative structural models for the arrangements of the alkyl chains in CnSkanemite are depicted in Figure 7.

Figure 7. Proposed models for the arrangements of alkyl chains in the interlayer spaces of C*n*S–kanemites.

Figure 8. 29 Si MAS NMR spectra of (a) C1M₂S-kanemite, (b) C8M₂S-kanemite, and (c) C18M₂S-kanemite.

Table 2. Relative Intensity in the ²⁹Si MAS NMR Spectra and the Amounts of Alkylsilyl Groups for CnM₂S-Kanemite

	% M ¹	$% Q^3$	$% Q^4$	Q4/M1	${ m Q^{4/}}\ ({ m Q^{3}+Q^{4}})$	$({ m Q}^4/({ m Q}^3+{ m Q}^4))/{ m amt~of} \ alkylsilyl \ groups^a$
C1M ₂ S	30	34	37	1.2	0.52	1.2
C8M ₂ S	8	44	49	6.3	0.53	5.9
$C18M_2S$	11	42	47	4.2	0.53	5.9

^aAmount of alkylsilyl groups per SiO₂ (Table 1).

Structural Models of the Interlayer Surface after Silvlation. The structures of the interfaces between attached alkylsilyl groups and the silicate layers were examined. The ²⁹Si MAS NMR spectra of CnM_2S -kanemite (n = 1, 8, and 18) are shown in Figure 8. The signals assigned to the M¹ unit (13 ppm), due to alkyldimethylsilyl groups, were observed in addition to the signals due to the Q³ and Q⁴ silicate units. As listed in Table 2, the Q^4/M^1 ratio in $C1M_2S$ -kanemite is 1.2, which indicates that the reaction between C1M₂S molecules and Si-OH groups is predominant. It should be noted here that a small amount of Q^4 units was present in the C16TMA-kanemite $(Q^4/(Q^3 + Q^4) =$ \sim 0.1). However, C8M₂S- and C18M₂S-kanemites exhibit much larger values of 6.3 and 4.2, respectively. This result implies that the condensation between adjacent Si-OH groups in the silicate sheets also proceeds during the silvlation, probably due to the relatively low reactivity of the silylating agents used.

The ²⁹Si MAS NMR spectra of CnM_1S -kanemites (Figure 9) suggest that the alkylmethylsilyl groups are mainly present in D² environments. As shown in Chart 1, two different structural models can be proposed for the attached alkylmethylsilyl groups in the D² environ-

Figure 9. 29 Si MAS NMR spectra of (a) C1M₁S-kanemite, (b) C8M₁S-kanemite, and (c) C18M₁S-kanemite.

Chart 1. Proposed Structural Models for the Attached Alkylsilyl Groups in CnM₁S-Kanemite and CnS-Kanemite

ment based on the crystal structure of kanemite. Model A shows that an alkylmethylsilyl group is immobilized on the silicate sheet by bridging two SiO_4 tetrahedra. Such a configuration is possible only when alkylmethyldichlorosilane reacts with two adjacent Si–OH groups confronting each other. The other proposed model (B) involves an alkylmethysilyl group that is bonded with one Si–OH group, and is further linked to another alkylmethysilyl group by the condensation between residual functional groups. This "dimerization" reaction is likely to occur during the washing and/or drying periods by the hydrolysis of unreacted Si–Cl groups.

Calculated values for the Q^4/D^2 ratio, which is equivalent to the $(Q^4/(Q^3 + Q^4))/(amount of silyl groups)$ ratio, in models A and B are 2 and 1, respectively. In C1M₁S-kanemite, the experimental value for the Q^4/D^2 ratio

Table 3. Relative Intensity in the ²⁹Si MAS NMR Spectra and the Amounts of Alkylsilyl Groups for CnM₁S-Kanemite

					Q4/	$(Q^4/(Q^3 + Q^4))/$ amt of alkylsilyl	
	$\% D^2$	$% \mathbf{Q}^3$	$\% Q^4$	Q^4/D^2	$(Q^3 + Q^4)$	groups ^a	
C1M ₁ S	33	21	46	1.4	0.51	1.4	
C8M ₁ S	25	26	48	1.9	0.65	1.9	
C18M ₁ S	26	26	47	1.8	0.64	1.9	

^a Amount of alkylsilyl groups per SiO₂ (Table 1).

Figure 10. FT-IR spectra of (a) C16TMA-kanemite, (b) C1M₁S-kanemite, (c) C8M₁S-kanemite, and (d) C18M₁S-kanemite.

was 1.4 (Table 3), indicating that the alkylsilyl groups are attached as depicted in both models. In contrast, the values for C8M₁S- and C18M₁S-kanemites were 1.9 and 1.8, respectively; therefore, the interface structure of model A should be predominant. The difference in the degree of silvlation appears to be responsible for such variations in structure. If the alkylsilyl groups were uniformly distributed within the interlayer, dimerization (model B) should occur when the amount of attached alkylsilyl groups is above 0.5. In C1M₁Skanemite, the quantity of surface silvl groups was 0.51, which is sufficient for the dimerization when the reaction proceeds randomly. On the other hand, in the cases of C8M₁S- and C18M₁S-kanemites, alkylmethylsilyl groups are likely to bridge between two adjacent SiO₄ tetrahedra to form two five-membered rings, due to the relatively small numbers of attached alkylsilyl groups (0.33–0.34 per SiO₂).

According to a recent report on the vibrational spectra of various layered silicates, including magadiite, kenyaite, and ilerite (octosilicate),²⁵ the absorption bands at around 800 cm⁻¹ are ascribed to the siloxane "cage" motions (ν_s (Si–O–Si)). The IR spectra for a series of CnM₁S–kanemites are shown in Figure 10. In the spectrum of C1M₁S–kanemite, the absorption band due to the ν_s (Si–O–Si) type of motion overlaps with strong

⁽²⁵⁾ Huang, Y.; Jiang, Z.; Schwieger, W. Chem. Mater. 1999, 11, 1210.

(0.1)(0.2 + 0.1))/

Table 4. Relative Intensity in the ²⁹Si MAS NMR Spectra and the Amounts of Alkylsilyl Groups for CnS-Kanemite

	% T ²	% T ³	$% Q^3$	$\% Q^4$	$Q^{4/(T^{2}+T^{3})}$	$Q^{4/}(Q^{3} + Q^{4})$	amt of alkylsilyl groups/SiO ₂	(Q ⁴ /(Q ³ + Q ⁴))/ amt of alkylsilyl groups
C1S	14	26	17	46	1.2	0.73	0.75	1.0
C2S	13	27	16	44	1.1	0.73	0.54	1.3
C4S	17	14	23	46	1.5	0.67	0.46	1.5
C8S	16	14	24	46	1.6	0.65	0.40	1.6
C12S	16	15	27	42	1.4	0.64	0.40	1.5
C16S	19	12	26	44	1.5	0.63	0.39	1.6
C18S	13	16	24	47	1.6	0.66	0.38	1.7

Si-CH₃ absorption bands at 850 and 800 cm⁻¹. However, an additional band was observed at 790 cm⁻¹ in the spectra of C8M₁S- and C18M₁S-kanemites. These bands are not observed in the spectrum of kanemite,²⁶ and probably arise from Si-O-Si linkages formed by silylation. A similar band at 790 cm⁻¹ is also observed for ilerite (observed at 789 cm⁻¹), indicating a structural similarity in these materials containing five-membered rings.²⁰

The ²⁹Si MAS NMR spectra of CnS-kanemite are shown in Figure 11. The signals assigned to the T² and T³ environments were mainly observed for the attached alkylsilyl groups. Possible structural models for the alkylsilyl units in the T^2 and T^3 environments are illustrated in Chart 1. On the basis of the models for the CnM₁S-kanemite system, the structural models for T^2 silicate species in CnS-kanemite are easily obtained by the replacement of -CH₃ groups by -OH groups. The formation of T³ silicate species requires the condensation between adjacent alkylsilyl groups in the T² environment that are located along the *a* axis to satisfy a tetrahedral coordination of organosilicate units. As listed in Table 4, the $Q^4/(T^2 + T^3)$ ratios in C1S- and C2S-kanemites were 1.2 and 1.1 ($(Q^4/Q^3 + Q^4)/(amount)$ of silyl groups) = 1.0 and 1.3), respectively. Therefore, it is supposed that the alkylsilyl groups are predominantly attached as depicted in model B. CnS-kanemite

Figure 11. ²⁹Si MAS NMR spectra of C*n*S–kanemites for (a) n = 1, (b) n = 2, (c) n = 4, (d) n = 8, (e) n = 12, (f) n = 16, and (g) n = 18.

(n = 4-18) exhibited Q⁴/(T² + T³) ratios in the range of 1.4–1.6, and also (Q⁴/(Q³ + Q⁴))/(amount of silyl groups) ratios of 1.5–1.7, which indicates that the products contain substantial proportions of alkylsilyl groups that are attached as in model A. These differences in structure can also be explained by differences in the degree of silylation. Thus, new ring and cage structures were formed on the layered silicate, which implies two-dimensional nanodesign of silicate frameworks. This method can be applied to other layered polysilicates. The structures of layered polysilicates with thicker silicate layers (e.g., magadiite and kenyaite) need to be investigated further toward well-designed organosilicate nanomaterials with more condensed networks.

Conclusions

Alkylsilylation of the interlayer surface of a layered polysilicate kanemite was performed by using alkylchlorosilanes with various functionalities and alkyl chain lengths. Silylation without deteriorating the original silicate frameworks was confirmed. The variation in the chain length in alkyltrichlorosilanes results in the difference in the degree of silvlation as well as the arrangements of the interlayer alkylsilyl groups. CnS-kanemite derived from alkyltrichlorosilanes with shorter chains (n = 1-4) exhibited relatively large BET surface areas, and changed to nonporous structures with n = 8-18. Although kanemite is composed of single layered silicate sheets of six-membered rings, silicate frameworks containing additional five- and six-membered rings are formed when dichloro- and trichloro-(alkyl)silanes are used for silvlation. Being completely different from pillaring of layered materials, this is the first step for the conversion of two-dimensional silicate into three-dimensional networks with a well-designed architecture by organic modification. This method will open up new possibilities for the design and construction of novel artificial crystalline microporous and mesoporous silicates.

Acknowledgment. We are grateful to Professor Y. Sugahara (Waseda University) for helpful discussion. This work was supported by a Grant-in-Aid for the Scientific Research by the Ministry of Education, Science, Sports, and Culture of the Japanese Government.

Supporting Information Available: Table giving the IR peak positions of CH_2 stretching vibrations for CnS-kanemite (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

CM010103W

⁽²⁶⁾ Huang, Y.; Jiang, Z.; Schwieger, W. Microporous Mesoporous Mater. 1998, 26, 215.